2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activaton and DNA binding of AhR.
نویسندگان
چکیده
Activation of the aryl hydrocarbon receptor (AhR) by 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a potent agonist of AhR, induces a marked reduction in steady state AhR. To analyze the mechanism of regulation of ligand-activated AhR, we examined the biochemical pathway and function of the down-regulation of the receptor by TCDD. Pulse-chase experiments reveal that TCDD shortens the half-life (t1/2) of AhR from 28 to 3 h in mouse hepatoma cells. Inhibitors of the 26 S proteasome, lactacystin and MG132, block the TCDD-induced turnover of AhR. The TCDD-induced degradation of AhR involves ubiquitination of the AhR protein, because (a) TCDD induces formation of high molecular weight, ubiquitinated AhR and (b) degradation of AhR is inhibited in ts20 cells, which bear a temperature-sensitive mutation in the ubiquitin-activating enzyme E1, at a nonpermissive temperature. Inhibition of proteasomal degradation of AhR increases the amount of the nuclear AhR.Arnt complex and "superinduces" the expression of endogenous CYP1A1 gene by TCDD, indicating that the proteasomal degradation of AhR serves as a mechanism for controlling the activity of the activated receptor. We also show that deletion of the transcription activation domain of AhR abolishes the degradation, whereas a mutation in the DNA-binding region of AhR or Arnt reduces the degradation; these data implicate the transcription activation domain and DNA binding in AhR degradation. Our findings provide new insights into the regulation of TCDD-activated AhR through ubiquitin-mediated protein degradation.
منابع مشابه
Abnormal Liver Development and Resistance to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Toxicity in Mice Carrying a Mutation in the DNA-Binding Domain of the Aryl Hydrocarbon Receptor
The aryl hydrocarbon receptor (AHR) is known for its role in the adaptive and toxic responses to a large number of environmental contaminants, as well as its role in hepatovascular development. The classical AHR pathway involves ligand binding, nuclear translocation, heterodimerization with the AHR nuclear translocator (ARNT), and binding of the heterodimer to dioxin response elements (DREs), t...
متن کاملInteraction of diuron and related substituted phenylureas with the Ah receptor pathway.
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals, including the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we have examined the ability of diuron, a widely used herbicide, and several structurally related substituted phenylureas to b...
متن کاملLeukocyte activation induces aryl hydrocarbon receptor up-regulation, DNA binding, and increased Cyp1a1 expression in the absence of exogenous ligand.
The aryl hydrocarbon receptor (AhR) functions as a transcription factor after ligand binding by halogenated aromatic hydrocarbons. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic halogenated aromatic hydrocarbon, is dependent on binding to the AhR to mediate a broad range of toxic effects. Immune suppression is one of the most sensitive sequela associated with TCDD exposure, yet, par...
متن کاملRelB, a new partner of aryl hydrocarbon receptor-mediated transcription.
The nuclear factor-kappaB (NF-kappaB) transcription factor family has a crucial role in rapid responses to stress and pathogens. We show that the NF-kappaB subunit RelB is functionally associated with the aryl hydrocarbon receptor (AhR) and mediates transcription of chemokines such as IL-8 via activation of AhR and protein kinase A. RelB physically interacts with AhR and binds to an unrecognize...
متن کاملResistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor.
The Ah receptor (AHR) mediates the metabolic adaptation to a number of planar aromatic chemicals. Essential steps in this adaptive mechanism include AHR binding of ligand in the cytosol, translocation of the receptor to the nucleus, dimerization with the Ah receptor nuclear translocator, and binding of this heterodimeric transcription factor to dioxin-responsive elements (DREs) upstream of prom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 12 شماره
صفحات -
تاریخ انتشار 2000